Abstract

The finite element method (FEM) is widely used to evaluate the seismic performance of pile-supported buildings. However, there are problems associated with modeling the pile end resistance using the FEM, such as the dependence on the mesh size. This paper proposes a new method of modeling around the pile tip to avoid the mesh size effect in two-dimensional (2D) analyses. Specifically, we consider the area of influence around the pile tip as an artificial constraint on the behavior of the soil. We explain the problems with existing methods of modeling the pile tip. We then conduct a three-dimensional (3D) analysis of a pile in various soil conditions to evaluate the area of influence of the soil around the pile tip. The analysis results show that the normalized area of influence extends approximately 2.5 times the diameter of the pile below the pile tip. Finally, we propose a new method for modeling pile foundations with artificial constraints on the nodal points within the area of influence. The proposed model is expected to be useful in the practical seismic design of pile-supported buildings via a 2D analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call