Abstract
Novel index-guiding photonic crystal fibers (PCF) with rings of cladding holes (circularly or elliptically shaped) arranged in the Fibonacci series are proposed. The dispersion, confinement losses, and generated birefringence in PCFs are evaluated for light signal at 1.55-µm wavelength, by employing alterations in various design parameters. Full-vector analysis using anisotropic perfectly matched layers is performed to validate the accuracy of the modeled PCFs in a finite-difference time-domain environment. For such PCF modeling, the lower value of dispersion is found to be 7.311 ps nm−1 km−1, and the zero-dispersion wavelength is shifted to lower infrared region in accordance with variation in the hole diameter-to-pitch ratio.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.