Abstract

We have described the transfer of modulated radiation in a random medium in terms of the Bethe-Salpeter equation. Based on the obtained expression for the scattering intensity, we have developed an original technique of modeling the photon density waves in terms of the Monte Carlo method. Expressions for measurable parameters in the frequency domain have been derived, and, based on them, the amplitude and phase of the photon density waves have been calculated. We have studied how the parameters of the photon density waves depend on the scattering anisotropy for model states with the Henyey-Greenstein phase function. The range of applicability of the diffusion approximation for the interpretation of signals of photon density waves has been investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.