Abstract
The suffusion phenomenon occurs when fine soil particles are detached by seepage flow and transported away from the matrix. This process is one of the main causes of failure of hydraulic structures and road embankments. This study aimed to build a numerical model for simulating the particles suffusion within a porous medium. This model combines a flow law and an erosion equation related to the evolution of soil porosity. In addition the dispersion and the deposition kinetics processes of eroded particles were combined with detachability process. The equations describe the evolution of the instantaneous concentration of the fluidized solid, and the variation of eroded mass. Sensitivity analysis allows highlighting the influence of the different parameters on suffusion, particularly that deposition kinetics starts acting only below a threshold of hydraulic gradient and beyond a given sample length. The adjustment results indicate that the suffusion process is strongly related to hydraulic conditions, physical soil characteristics and pore water chemicals. The comparison of numerical results with experimental data from laboratory tests provides a quite good agreement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.