Abstract

ABSTRACTPaired data have been widely collected in the efficiency studies of a new method against an established method in environmental, ecological and medical studies. For example, in comparative fishing studies, ability of catching target species (fish catch) or reducing the catch of non-target species (fish bycatch) is usually investigated through a paired design. These paired fish catches by weight are generally skewed and continuous, but with a significant portion of exact zeros (no catch). Such zero-inflated continuous data are traditionally handled by two-part models where the zero and positive components are handled separately; however, this separation generally destroys paired structure, and thus may result in substantial difficulty in characterizing the relative efficiency between two methods. To overcome this problem, we consider compound Poisson mixed model for paired data with which the zero and non-zero components are characterized in an integral way. In our approach, the clustering effects by pair are captured by incorporating relevant random effects. Our model is estimated using orthodox best linear unbiased predictor approach. Unlike two-part models, our approach unifies inferences of zero and positive components. Our method is illustrated with analyses of winter flounder bycatch data and ultrasound safety data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.