Abstract

The oxidation process induced in ethylene-propylene-diene (EPDM) copolymer by gamma irradiation was simulated by solving equations on chemical reactions and gas diffusion rates. As a result, distributions of oxidative products and gases and changes in material properties were clarified. All the oxidative products such as ketones, alcohols, and carboxylic acids, crosslinks between molecular chains, and chain scissions in EPDM increase with irradiation and they show concave spatial distributions inside the sample sheets. The simulation results demonstrates that EPDM becomes hard when it was irradiated by gamma rays and the increase in hardness is more significant at the surface of the sample sheet than its inside. Moreover, it was found that a low diffusion coefficient of oxygen in EPDM leads to the appearance of a clearer diffusion-limited regime of degradation. These simulation results are in good agreement with experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.