Abstract

Two numerical models are investigated to model random water waves (RWWs) transformation due to mild depth variation. Modelling of steady on-shore propagation of small-amplitude RWWs is based on superposition principle of waves of different heights and directions. Each component is simulated through either the parabolic model (PM) or the elliptic model (EM). PM simulates weak refraction, diffraction, shoaling, and wave breaking. EM simulates strong refraction, diffraction, and shoaling. Both models neglect wave reflection. Comparison between PM and EM, in test cases that are experimentally measured, proved that both models give good results for unidirectional and narrow-directional RWW. However, EM is more accurate in modelling broad-directional RWWs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.