Abstract

A Zone Model has been developed for the prediction of NO reduction by “reburning” in turbulent diffusion flames. The computations of fluid dynamics are decoupled from those of detailed combustion chemistry including those of the nitrogen species. The calculations begin with the computations of the stream function, heat release, temperature, and major species concentration distributions using a commercial CFD code and simple, one or two step chemistry. The modeled space is then subdivided into volume elements (zones) bounded by streamlines and some axial coordinate. The sizes of these zones are much larger than those of a computational grid so that it is practicable to use detailed chemistry for the calculation of progress of reaction within such a zone. In the experimental investigation natural gas with and without additive NH3 was used as “reburn” fuel. It was injected axially into the NO bearing combustion products of a 335 kW natural gas-air flame to obtain a parabolic flow which can be modeled more easily. Detailed in-flame measurements permitted critical tests of the prediction method by the comparison of experimental and calculated data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.