Abstract

Material characteristics have significant impact on simulation of sheet metal forming. The accuracy of springback prediction depends on the estimation of strain recovery after die release. It is well known that the experimentally obtained unloading behavior for steel sheets is nonlinear stress-strain relationship, and the response during unloading and reloading shows a hysteresis loop. This behavior should be modeled by a material model and considered in FE-simulations for accurate predictions. In this study, the in-plane stress reversal tests for high strength steel were carried out to observe the elastoplastic behaviors after stress reversal. A material model that considers the nonlinear behavior was newly developed and implemented into the FEM software. The accuracy of springback prediction with the developed material model was validated by the draw bending tests and its springback simulations. The simulations with the developed material model show better agreement with the experimentally measured springback profile as compared to the other material models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call