Abstract

The effective mobility approach is compared with the kinetic energy approach in terms of sharp interface modeling and phase-field modelling of non-equilibrium solute diffusion upon rapid solidification of binary alloys. The two approaches are equivalent for modelling of long range solute diffusion in bulk phases, but only the effective mobility approach can introduce the non-equilibrium solute diffusion effect to short range solute diffusion at a sharp interface or within a diffuse interface. Addition of the kinetic energy terms results in an unreasonable non-bilinear expression of the flux and thermodynamic driving force in the free energy production of interface migration or phase field propagation, whereas the effective mobility approach allows the thermodynamic extremal principle workable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.