Abstract

To evaluate the heat transfer performance (HTP) of hybrid nanofluids, numerical simulations are carried out in an industrial length single pass shell and tube heat exchanger. In shell, ISO VG 68 oil enters with [Formula: see text]C and with [Formula: see text]C, the coolant passes into the tube. CNT-[Formula: see text]/water and CNT-[Formula: see text]/sodium alginate (SA) are used as Newtonian and non-Newtonian hybrid nanofluid, respectively. The influence of base fluid and nanoparticles on thermal performance of heat exchanger is studied. The chosen nanoparticles are reliable to the industrial deployment. The current numerical procedure is validated with the earlier experimental results. Volume fraction of nanoparticles is optimized for an effective HTP of the heat exchanger. About 60% increment in heat transfer coefficient is observed when hybrid nanofluid is employed. By using Newtonian hybrid nanofluid, 50% improvement in Nusselt number is marked out. Effectiveness and heat transfer rate of heat exchanger are higher with the employment of Newtonian hybrid nanofluid. Results indicated that, even though Newtonian hybrid nanofluid shows higher thermal performance, non-Newtonian hybrid nanofluid is preferable for energy consumption point of view.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call