Abstract

Modeling and accurate estimation of mutual flux in switched reluctance motors are complex due to interphase flux interactions, magnetic saturation, and harmonics. The mutual flux contributes significantly toward torque production of mutually coupled switched reluctance motors (MCSRMs); therefore, their accurate modeling directly influences the control design. In this article, a net-flux-based machine model is proposed to model MCSRMs. The model utilizes dual-phase excitation and multiphase excitation methods to generate the flux lookup tables from the finite-element model of the MCSRM. The modeling process is simple, as it does not require the segregation of the self- and mutual flux components, and machine performance can be predicted accurately using the net flux. The proposed modeling method is validated by implementing it for a fully pitched and concentrated-wound MCSRM and evaluating accuracy against the finite-element method. Details of the developed model are presented along with its comparison with existing methods. A prototype of a fully pitched MCSRM has been built, and the model is validated experimentally. Results show that the proposed model has excellent accuracy even under saturated operating conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call