Abstract

This paper presents the modeling of a robot's navigation using ultrasonic sensors under uncertainty. The robot tries to avoid obstacles by using the fuzzy logic controller to process the data coming from three ultrasonic sensors. To assess the performance of fuzzy logic optimized robot navigation controller with ultrasonic sensors, which measure the distance by calculating the time spent on the object and its return, the obstacles are placed in front of, left, and right of the robot. Mamdani fuzzy reasoning system is used for the designed controller for its intuitive properties and fewer setting parameters which reduces the amount of time spent on the programming of the controller. 25 rules are considered to cover a robot’s possible interactions with obstacles. For an easy understanding of navigation architecture and rapid algorithm implementation, in this paper, a MATLAB simulation framework is developed. MATLAB/Simulink is one of the best simulation tools required to design the architecture and verify algorithms with real-time constraints. Resultant models of the fuzzy optimized controller demonstrate the superior performance of the fuzzy logic controller with high adaptability to the environment while maintaining a sufficient level of accuracy. The designed fuzzy controller can be used in microprocessor/microcontroller-based robots owing to easiness in implementation and coding.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.