Abstract
The free energy of mixing of acetone and water is calculated at 298 K by means of thermodynamic integration considering combinations of three acetone and six water potentials. The Anisotropic United Atom 4 (AUA4) and Transferable Potential for phase Equilibria (TraPPE) models of acetone are found not to be miscible with any of the six water models considered, although the free energy cost of the mixing of any of these model pairs is very small, being below the mean kinetic energy of the molecules along one degree of freedom of 0.5RT. On the other hand, the combination of the Pereyra, Asar, and Carignano (PAC) acetone and TIP5P-E water models turns out to be indeed fully miscible, and it is able to reproduce the change of the energy, entropy, and Helmholtz free energy of mixing of the two neat components very accurately (i.e., within 0.8 kJ/mol, 2.5 J/(mol K), and 0.3 kJ/mol, respectively) in the entire composition range. The obtained results also suggest that the PAC model of acetone is likely to be fully miscible with other water models, at least with SPC and TIP4P, as well.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.