Abstract

Modeling of recombination velocity of minority carriers at the p-p/sup +/ low-high junction end of the p-base region of n/sup +/-p-p/sup +/ silicon diodes is carried out by taking the minority-carrier recombination effects in the space-charge region (SCR) of the low-high (L-H) junction into account. Solving Poisson's equation in the SCR numerically revealed that the SCR is composed of an accumulation layer on the p side and a depletion layer on the p/sup +/ side. Generally, the depletion layer is very thin as compared with the accumulation layer, and the built-in potential across the depletion layer never exceeds the thermal voltage, i.e. kT/q. Further, the minority-carrier recombination in this layer is also insignificant. For most L-H junction-based silicon devices, in practice, the minority-carrier recombination in the accumulation layer controls the value of the effective minority-carrier recombination velocity (S/sub eff/) at the back surface of the p-base region and the influence of the recombination in the heavily doped p/sup +/ region is less significant.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call