Abstract

AbstractThe mechanical behavior of most materials is dictated by a present or emergent underlying microstructure which is a direct result of different, even competing physical mechanisms occurring at lower length scales. In this work, energetic microstructure interaction via different non‐convex contributions to the free energy in metals is modeled. For this purpose rate dependent gradient extended crystal plasticity models at the glide‐system level are formulated. The non‐convex energy serves as the driving force for the emergent microstructure. The competition between the kinetics and the relaxation of the free energy is an essential feature of the model. Non‐convexity naturally arises in finite‐deformation single‐slip crystal plasticity and the results of the gradient model for this case are compared with an effective laminate model based on energy relaxation. Similarities as well as essential differences are observed and explained. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.