Abstract

The micro-plasto-hydrodynamic lubrication (MPHL) model of pit evolution is extended to account for the variation of sliding speed and strain rate in rolling and drawing processes. Results show that all of the following factors are important: pit angle, lubricant viscosity and pressure viscosity coefficient, material yield stress and sliding speed. Theoretical predictions for the change in pit area during the deformation process are well correlated by a non-dimensional group of these parameters. The model agrees reasonably with the measured change in pit volume and area from drawing experiments on cold rolled stainless steel strip containing both artificial and stochastic roughness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.