Abstract

Among the ferroelectric thin films used in field-effect transistor devices; the ferroelectric copolymer of polyvinylidene fluoride (PVDF) (–CH2–CF2–), with trifluoroethylene (TrFE) (–CHF–CF2–), has distinct advantages, including low dielectric constant, low processing temperature, low cost, and compatibility with organic semiconductors. The operation of a metal-ferroelectric-insulator-semiconductor structure with P(VDF-TrFE) as the ferroelectric layer was analyzed and optimized by numerical solution of the Miller and McWhorter model. A model device consisting of 20 nm PVDF/TrFE on a 10-nm-thick high-k dielectric buffer exhibits a memory window of 5 V with an operating voltage of ±15 V. The operating voltage can be reduced to ±12 V by reducing the ferroelectric and dielectric thicknesses to 10 and 5 nm, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.