Abstract

It has been extensively studied to employ memristors to model the relationship between the electromagnetic field and the membrane potential, especially for the research of modeling and dynamical analyses of electrical activity using HR neurons with memristors. This paper proposes a novel 4D HR model with a threshold flux-controlled memristor (MHR), which describes the electromagnetic induction effect. The proposed 4D HR model retains the original HR properties and can describe the complex dynamics of neurons' electrical activities with fewer parameters than the existing models. Due to the particularity of the no equilibrium point of the MHR model, the hidden dynamics are found in the proposed MHR model. The generalized Hamiltonian function is fully derived for the MHR neuron model using Helmholtz's theorem. The simplest form of the Hamiltonian form is given by assigning special values. The average Hamiltonian energy and its bifurcation are employed to find the connection between energy and firing patterns. The band-limited white noise is also studied, and it is found that it positively influences the electrical activities in the proposed MHR system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.