Abstract

ABSTRACTThe determination of the optimal machining conditions for assuring desired machined surface characteristics of a part is one of the main goals in a machining process. In this article, the impact of a cooling lubrication fluid, its delivery phase and location, as well as machining parameters, on residual stresses have been investigated. The workpiece material under observation is Inconel 718. For measuring residual stress profiles, X-ray diffraction technique has been used. Additionally, besides the experimental work, modeling with the finite element method model was implemented and correlated with experimental results. The results show that residual stresses are influenced by the cooling lubrication scenario, even though the machining parameters are kept constant. However, flood and cryogenic machining show more compressive residual stresses than a dry machining case. On the other hand, the results have shown also that machining parameters influence residual stresses, where stresses increase with their increase (vc and f).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.