Abstract
Strain controlled uniaxial low cycle fatigue (LCF) tests of P92 steel were conducted at strain amplitudes of 0.4%, 0.6% and 0.8% in fully reversed manner with strain rate of 1.0×10-3s-1 at high temperature of 650 °C. Cyclic softening behavior was studied and time-independent cyclic plasticity model was used to represent the cyclic mechanical behavior of this steel. Material parameters were determined step by step at higher strain amplitude of 0.8%, experimental data with lower strain amplitude were used to validate the extrapolation of the model. Comparison of the simulated and experimental results shows that the proposed model can give a reasonable prediction of stress-strain hysteresis loop for P92 steel at high temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.