Abstract

Numerical modeling of harmonic acoustic field produced by a common commercial loudspeaker is carried out. The goal is to obtain the directional characteristic of the device. So far, these characteristics could only be obtained by measurements, which was very complicated and also expensive. Another benefit of the model consists in obtaining a reference mathematical model for other acoustic devices, such as diffusors or resonators. The continuous mathematical model is derived from the physical laws and is considered for the ideal fluids with properties of a perfect continuum. The model of the loudspeaker in the axial symmetry (2D) is described by the Helmholtz differential equation for harmonic acoustic field and for the correct solution the appropriate boundary conditions and material properties are also defined. The task is solved numerically by a fully adaptive higher-order finite element method developed by the hp-FEM group. The convergence of results is discussed for the different adaptive techniques and the advantages of the use of \(hp\)-adaptivity are demonstrated. Selected results of the computations are then compared with experiments performed in an anechoic chamber at the University of West Bohemia and based on the standard CSN EN 60268-5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.