Abstract
The paper proposes a self-sustained single-degree-of-freedom oscillator to accurately generate the longitudinal contact force between a pedestrian’s feet and the supporting flat rigid surface. The model is motivated from the self-sustained nature of pedestrian walking, i.e. a pedestrian produces the required internal energy to maintain a repetitive body motion. It is derived by adding two nonlinear terms to the conventional Rayleigh oscillator to yield odd as well as even harmonics, as observed in experimentally recorded longitudinal force data. For the dynamic analysis of the oscillator, two methods are adopted: the energy balance method and the Lindstedt–Poincare perturbation technique. Moreover, the least-squares identification procedure is used to identify values of the oscillator parameters from the force records of 12 different pedestrians walking on an instrumented treadmill at 10 walking speeds. The results generated by the proposed oscillator agree well with the experimental data.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Structural Stability and Dynamics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.