Abstract

To acquire a stable reverberation signal from an irregular ocean bottom, we derive the analytic surface integral of a scattered signal using Stokes’ theorem while approximating the bottom using a combination of polygon facets. In this approach, the delay difference in the elemental scattering area is considered, while the representative delay is used for the elemental scattering area in the standard reverberation model. Two different reverberation models are applied to a randomly generated rough bottom, which is composed of triangular facets. Their results are compared, and the scheme using analytic integration shows a converged reverberation signal, even with a large elemental scattering area, at the cost of an additional computational burden caused by a higher order approximation in the surface integral of the scattered signals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.