Abstract

The USEPA issued the "Framework for Metal Risk Assessment" in 2007, recognizing that human and environmental exposure to metals and metalloids (MMEs) poses challenges risk assessment. Inhalation of aerosols containing MMEs is a primary pathway for exposure in the occupational setting, for consumer exposure, and to general population exposure associated with point-source emissions or ambient sources. The impacts of inhalation can be at the point of deposition (local exposure) or may manifest after uptake into the body (systemic exposure). Both local and systemic exposure can vary with factors that determine the regional deposition of MME-containing aerosols. Aerosol characteristics such as particle size combine with species-specific characteristics of airway morphology and lung function to modulate the deposition and clearance of MME particulates. In contrast to oral exposure, often monitored by measuring MME levels in blood or urine, inhalation exposure can produce local pulmonary impacts in the absence of significant systemic distribution. Exposure assessment for nutritionally essential MMEs can be further complicated by homeostatic controls that regulate systemic MME levels. Predictions of local exposure can be facilitated by computer models that estimate regional patterns of aerosol deposition, permitting calculation of exposure intensity in different regions of the respiratory tract. The utility of deposition modeling has been demonstrated in assessments of nutritionally essential MMEs regulated by homeostatic controls and in the comparison of results from inhalation studies in experimental animals. This facilitates extrapolation from animal data to humans and comparisons of exposures possessing mechanistic linkages to pulmonary toxicity and carcinogenesis. Pulmonary deposition models have significantly advanced and have been applied by USEPA in evaluations of particulate matter. However, regional deposition modeling has yet to be incorporated into the general guidance offered by the agency for evaluating inhalation exposure. Integr Environ Assess Manag 2023;00:1-13. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call