Abstract
This paper proposes a new model that predicts the cell voltage dynamics and capacity degradation induced by lithium plating and stripping. The proposed model uses a single equilibrium reaction to describe the deposition and dissolution of metallic lithium, predicting the partial reversibility of the plating/stripping reaction, the characteristic voltage plateau during relaxation, and the capacity loss due to the Loss of Cyclable Lithium (LCL). The model is integrated with a Doyle–Fuller–Newman (DFN) electrochemical model, calibrated and validated with experimental data. The model has the potential to improve the accuracy of predicting the effects of lithium plating in Li-ion cells and aid in the development of Extreme Fast Charging (XFC) technology for BEVs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.