Abstract

For the first time, we modeled the optical losses in organic-inorganic CH3NH3PbI3−xClx and MAPbI3−xClx Perovskite solar cells taking into account the interference and multiple reflection effects. This model is rather simple than the conventionally used Optical Matrix for calculating the reflection and absorption rates in heterojunction devices. The input parameters are only the refractive index and extinction coefficient of every layer in device structure and the outputs are the short-circuit current density and efficiency as well as their loss percentage at the junctions. In contrast to the simulation results presented in the literature, this model does not ignore the multiple reflections and interference effects in perovskite layers. Therefore, slightly different results are presented which are different than the literature report but are closer to the experimentally established data. This claim is proven by comparing the transmission and reflection rates calculated with normal reflections and interference. The periodic changes (oscillations) in the simulation results are an evidence of the interference effects which has been neglected in the literature models. This suggests that the interference effect occurs in perovskite layers similar to anti-reflection coating and it is not negligible for thick layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.