Abstract

Combining quantum and molecular mechanics (QM/MM) methods and protein structure prediction algorithms, helix and loop movements are computed along the pathway of CO dissociation from myoglobin (Mb). The results are compared with high-resolution crystallographic data using sequence-displacement graphs. These graphs provide an unbiased method for evaluating main-chain segmental motions; they resolve an apparent disagreement between two sets of high-resolution crystal structures for MbCO and deoxyMb. The QM/MM modeling of the CO deligation reproduces the experimentally observed spin states and photodissociated crystal structure. The principal effect of CO dissociation is shown to be a concerted rotation of the E and F helices, which hold the heme like a clamshell. The rotation is a response to deligation forces, which impel the F helix away from the heme because of the Fe spin conversion, and which allow the E helix to collapse toward the heme as nonbonded contacts on the distal side are relieved. Additional helix and loop displacements stem from these primary events. In particular, the CD loop is found to be repositioned as a result of steric interactions with the water molecule that becomes H-bonded to the distal histidine in deoxyMb. A similar EF rotation and CD loop displacement are proposed to be the first steps along the allosteric pathway from the R to the T state in hemoglobin.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call