Abstract

Lean premixed combustion (LPC) of natural gas is of considerable interest in land-based gas turbines for power generation. However, modeling such combustors and adequately addressing the concerns of LPC, which include emissions of nitrogen oxides, carbon monoxide and unburned hydrocarbons, remains a significant challenge. In this paper, characteristics of published simulations of gas turbine combustion are summarized and methods of modeling turbulent combustion are reviewed. The velocity–composition PDF method is selected for implementation in a new comprehensive model that uses an unstructured-grid flow solver. Reduced mechanisms for methane combustion are evaluated in a partially stirred reactor model. Comprehensive model predictions of swirl-stabilized LPC of natural gas are compared with detailed measurements obtained in a laboratory-scale combustor. The model is also applied to industrial combustor geometries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call