Abstract

Technetium-99 comprises a significant health risk, since edible plants can bioaccumulate and convert it to more lipophilic species that cannot be excreted through urine. Batch kinetics of pertechnetate removal from aqueous solutions by two samples of crosslinked poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) functionalized with diethylene triamine (PGME-deta) was investigated at the optimum pH value of 3.0, and the initial solution activity of 325 MBq dm−3. PGME-deta was characterized by elemental analysis, mercury intrusion porosimetry, and scanning electron microscopy. Five kinetic models (pseudo-first, pseudo-second order, Elovich, Bangham, and intraparticle diffusion) were used to determine the best-fit equation for pertechnetate sorption. After 24 h, PGME-deta samples sorbed more than 98% of pertechnetate present, with maximum sorption capacity of 25.5 MBq g−1, showing good potential for remediation of slightly contaminated groundwater.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.