Abstract
A modified cellular automaton (MCA) model was developed and applied to simulate the evolution of solidification microstructures of both eutectic and hypoeutectic Al-Si alloys. The present MCA model considers the equilibrium and metastable equilibrium solidification processes in a multiphase system. It accounts for the aspects including the nucleation of a new phase, the growth of primary α dendrites and two eutectic solid phases from a single liquid phase, as well as the coupling between the phase transformation and solute redistribution in liquid. The effects of alloy composition and eutectic undercooling on eutectic morphology and eutectic nucleation mode were investigated. The simulated results were compared with those obtained experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.