Abstract

Within this study, the application area of the cellular automata model for the prediction of internal corrosion during high-temperature applications has been extended to intergranular oxidation. Besides a significant mass transport by diffusion, chemical reactions and phase transformations have to be accounted for in a modeling framework for internal corrosion. In addition, grain boundaries play an important role as they are acting as fast diffusing paths where the transport of matter is by orders of magnitudes higher than inside the grain. Here, a numerical model is presented to describe intergranular oxidation attack. The model is applied to the nickel-based superalloy 80a and the low-Cr steel X60. It is shown that experimental and simulated results are in good agreement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call