Abstract

An advanced boundary element method (BEM) with thin-body capabilities was developed recently for the study of interphases in fiber-reinforced composite materials (Y.J. Liu, N. Xu and J.F. Luo, Modeling of interphases in fiber-reinforced composites under transverse loading using the boundary element method, ASME J. Appl. Mech. 67 (2000) 41–49). In this BEM approach, the interphases are modeled as thin elastic layers based on the elasticity theory, as opposed to spring-like models in the previous BEM and some FEM work. In the present paper, this advanced BEM is extended to study the interface cracks at the interphases in the fiber-reinforced composites. These interface cracks are curved cracks between the fiber and matrix, with the presence of the interphases. Stress intensity factors (SIFs) for these interface cracks are evaluated based on the developed models. The BEM approach is validated first using available analytical and other numerical results for curved cracks in a single material and straight interface cracks between two materials. Then, the interface cracks at the interphases of fiber-reinforced composites are studied and the effects of the interphases (such as the thickness and materials) on the SIFs are investigated. As a special case, results of the SIFs for sub-interface cracks are also presented. It is shown that the developed BEM is very accurate and efficient for the interface crack analyses, and that the properties of the interphases have significant influences on the SIFs for interface cracks in fiber-reinforced composites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.