Abstract

The direct integration of membrane distillation and solar energy collection in a single module is a promising technology for autonomous seawater desalination in remote regions; however, the modeling and design of such modules are challenging because of the coupling of the radial and longitudinal heat and mass transfers. In a previous study, we provided as a first modeling approach a hollow fiber solar collector vacuum membrane distillation (VMD) module, considering a constant temperature at the shell side and a pure water feed. Here, a full model is developed to describe the coupled effects of the solar collector and a hollow fiber VMD module operating in an outside/in mode with saline water. The model considers all the main phenomena (membrane distillation, temperature and concentration polarization, absorption of solar radiation and energy balances over the solar collector, radial and longitudinal heat and mass transfer, seawater properties, and more than 30 variables). Applied to simulate the behavior of a semi-industrial-scale module, it allows the influence of solar radiation on the performance/limits of the integrated module to be discussed based on the radial and longitudinal profiles and heat flows. The model can be used to identify key points in the module design to better utilize solar radiation and manage heat flows.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.