Abstract

A groove is a key component of the structure of end mills, drills, and other integrated cutting tools. Machining a groove is one of the most difficult, time-consuming, and costly manufacturing process; therefore, for the sake of reduction of the machining cost and meeting the environmental regulations, the modeling of a machined groove with known wheel geometry and position is necessary for cutting tool manufacture. In order to reveal the process more clear and precise, the envelope theory and numerical methods are used. First, the basic calculation procedure for groove section points is built using a meshing equation. Accordingly, four universal problems for the simulation of groove manufacturing process are analyzed by four typical examples. Namely, the wheel side surface may interfere the machined tool edge and lead to an incorrect simulation; the wheel revolution surface may overcut the machined tool edge and produce fake points that would disturb the results; the tip point might not be precise enough; and the groove section points might be distributed unevenly and result in an imprecise groove section. The conditions to solve these problems are established by mathematical formulas and calculated by numerical methods. In addition, an integral procedure is built to simulate the machined groove with correct, precise, and even distribution points. Finally, groove simulation software is developed using MATLAB GUI, and the results are verified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.