Abstract

This paper focuses on the modeling of indoor air pollution in a naturally ventilated kitchen based on the computational fluid dynamics (CFD) approach to assess its ventilation effectiveness. The 3D incompressible Navier-Stokes equations with conservation of total energy are solved numerically using ANSYS-Fluent software and the pollutant paths are investigated from the profiles of velocity, pressure, turbulent kinetic energy and temperature throughout different sections of the kitchen. Experimental verification is made through the measurement of indoor air contaminant in the same kitchen. The simulation results agree well with the on-site measured data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.