Abstract

AbstractThe present paper gives an overview of the simultaneous research work carried out by RWTH Aachen University and ThyssenKrupp Steel Europe AG. With a combination of sophisticated simulation tools and experimental techniques it is possible to predict the relations between temperature distribution in the mould, solidification velocity, chemical steel composition and, furthermore, the mechanical properties of the steel shell. Simulation results as well as experimentally observed microstructure parameters are used as input data for hot tearing criteria. A critical choice of existing hot tearing criteria based on different approaches, like critical strain and critical strain rate, are applied and developed. The new “damage model” is going to replace a basic approach to determine hot cracking susceptibility in a mechanical FEM strand model for continuous slab casting of ThyssenKrupp Steel Europe AG.Critical strains for hot cracking in continuous casting were investigated by in situ tensile tests for four steel grades with carbon contents in the range of 0.036 and 0.76 wt%. Additionally to modeling, fractography of laboratory and industrial samples was carried out by SEM and EPMA and the results are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.