Abstract
A novel quantitative cellular automata (CA) model that simulates and predicts hillslope runoff and soil erosion caused by rainfall events was developed by integrating the local interaction rules and the hillslope surface hydraulic processes. In this CA model, the hillslope surface was subdivided into a series of discrete spatial cells with the same geometric features. At each time step, water and sediment were transported between two adjacent spatial cells. The flow direction was determined by a combination of water surface slope and stochastic assignment. The amounts of interchanged water and sediment were computed using the Chezy-Manning formula and the empirical sediment transport equation. The water and sediment discharged from the open boundary cells were considered as the runoff and the sediment yields over the entire hillslope surface. Two hillslope soil erosion experiments under simulated rainfall events were carried out. Cumulative runoff and sediment yields were measured, respectively. Then, the CA model was applied to simulate the water and soil erosion for these two experiments. Analysis of simulation results indicated that the size of the spatial cell, hydraulic parameters, and the setting of time step and iteration times had a large impact on the model accuracy. The comparison of the simulated and measured data suggested that the CA model was an applicable alternate for simulating the hillslope water flow and soil erosion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.