Abstract

A new technique has been developed to derive the large-signal transient response of semiconductor devices from small-signal frequency response data. The large-signal switching response can be calculated for an arbitrary input signal voltage and rise time. The new technique utilizes the Fourier transformation to combine arrays of small-signal data to compute the response waveform. The input waveform is decomposed into a superposition of small pulses. The response to each pulse is obtained by Fourier transformation techniques, using s-parameter data at appropriate bias points. The sum of these responses approximates the overall transient response. Simulations were performed for a GaAs MESFET for step inputs with the rise times of 8 ns and 150 ps. Good agreement was obtained between simulated waveforms and measured output waveforms in rise time, magnitude, and waveform shape. This algorithm is general and will work for other measured small-signal transfer parameters as functions of frequency and bias.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.