Abstract

In the present study, forward modeling of high-speed finish milling process has been solved using soft computing. Two different approaches, namely neural network (NN) and fuzzy logic (FL), have been developed to solve the said problem. The performance of NN and FL systems depends on the structure (i.e. number of neurons in the hidden layer, transfer functions, connection weights, etc.) and knowledge base (i.e. rule base and data base), respectively. Here, an approach is proposed to optimize the above-mentioned parameters of NN and FL systems. A binary coded genetic algorithm (GA) has been used for the said purpose. Once optimized, the NN and FL-based models will be able to provide optimal machining parameters online. The developed approaches are found to solve the above problem effectively, and the performances of the developed approaches have been compared among themselves and with that of the results of existing literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.