Abstract

A multiprocessor computer system suitable for physical, mathematical, and chemical models, as well as an exact method for the solution of a system of differential equations that describe the actual combustion of a pulverized coal flare, are necessary to study the numerically complex, physicochemical processes occurring in the combustion chambers of power plants. The results of numerical simulation can provide quite a high accuracy. However, the task of setting up a physical and mathematical model with the correct initial and boundary conditions has yet to be completed. In this paper, we studied heat and mass transfer in high-temperature reacting flows during the burning of Karaganda coal in the combustion chamber of an actual power boiler of a thermal power plant in Kazakhstan. The optimal conditions for computational experiments that correspond to real combustion processes are determined.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call