Abstract

An excavation process is a nonlinear dynamic problem that includes geometrical, material, and contact nonlinearities. The simulation of ground excavation has to face contact interaction in a changing geometry composed by several solid domains. The particle finite-element method (PFEM) is based on a Lagrangian description for modeling the motion of a continuum medium. The PFEM is particularly suitable for modeling a fluid motion with free surfaces. The application of the PFEM in ground excavation includes the use of the remeshing process, α-shape concepts for detecting the domain boundary, contact mechanics laws, material constitutive models, and surface wear models. Everything is correctly matched to quantify the excavation and the corresponding damage caused to the ground. The erosion and wear parameters of the soil/rock material govern the evolution of the excavation process. The preliminary results presented in this paper show that the PFEM it is a very suitable tool for the simulation of ground excavation processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.