Abstract

A finite element approach for modeling the gravity-affected sintering process is presented. The constitutive equations are based on the continuum theory of sintering in the framework of a linear viscous material behavior. The model describes the gravity influence on porosity evolution and shrinkage inhomogeneity. Simulations of densification, shape distortion, and porosity gradients are presented. The results are compared with a previously developed analytical model of sintering under the influence of gravity. First time a direct assessment of the impact of the densification inhomogeneity on the gravity-induced shape distortion during sintering is provided in a generic form similar to the master sintering curve approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.