Abstract

This paper investigates the modeling of graphene interband conductivity in near infared frequency range. First, the interband graphene conductivity is incorporated in surface boundary condition (SBC). Then, SBC is applied in finite-difference time domain (FDTD) method for modeling graphene sheet. Moreover, auxiliary differential equation (ADE) is used to characterize frequency dependent graphene conductivity in FDTD method. Advantages, accuracy, applicability and stability of the proposed method are analyzed by numerical examples. The method is validated by comparing the existing analytical results. This method can be easily implemented to model the graphene interband conductivity for optical device applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.