Abstract

ABSTRACTWe have extended a 2D simulation of grain growth to treat the effects of precipitates on the evolution of interconnect grain structures during post-patterning processing. It is known from experiments that different annealing histories result in different precipitate sizes and locations. Precipitates capture and effectively pin grain boundaries and inhibit grain growth and evolution toward bamboo structures. We find that even a small volume fraction of precipitates prevent an interconnect strip from reaching the fully bamboo structure by retarding grain growth and lowering the average grain size. At a late stage of evolution, cluster regions are pinned by precipitates on both sides, preventing further transformation to the by far more reliable bamboo structure. The results from grain growth simulations have been used with our electromigration simulator MTT/EmSim to investigate the dependence of interconnect reliability on linewidth and precipitate distribution. We find that in lines with precipitates the bamboo structure is not reached during post-pattern annealing even if the line width is smaller than the average grain diameter. Furthermore, it is found that while Cu in solid solution improves interconnect reliability, Al2Cu precipitates can inhibit post-patterning grain structure evolution to more reliable bamboo or near-bamboo structures so much that similar lines made of pure Al would be more reliable. Linked grain structure evolution and electromigration simulations allow process optimization for maximum interconnect reliability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.