Abstract
This paper employs ANN (Artificial Neural Network) models to estimate GHI (global horizontal irradiance) for three major cities in the UAE (United Arab Emirates), namely Abu Dhabi, Dubai and Al-Ain. City data are then used to develop a comprehensive global GHI model for other nearby locations in the UAE. The ANN models use MLP (Multi-Layer Perceptron) and RBF (Radial Basis Function) techniques with comprehensive training algorithms, architectures, and different combinations of inputs. The UAE models are tested and validated against individual city models and data available from the UAE Solar Atlas with good agreement as attested by the computed statistical error parameters.The optimal ANN model is MLP-based and requires four mean daily weather parameters; namely, maximum temperature, wind speed, sunshine hours, and relative humidity. The computed statistical error parameters for the optimal MLP-ANN model in relation to the measured three-cities mean data (referred to as UAE data) are MBE (mean bias error) = −0.0003 kWh/m2, RMSE = 0.179 kWh/m2, R2 = 99%, NSE (Nash-Sutcliffe model Efficiency coefficient) = 99%, and t-statistic = 0.005 at 5% significance level. Results prove the suitability of the ANN models for estimating the monthly mean daily GHI in different locations of the UAE.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.