Abstract

PurposeThe estimation of the radon hazard of a future construction site should ideally be based on the geogenic radon potential (GRP), since this estimate is free of anthropogenic influences and building characteristics. The goal of this study was to evaluate terrestrial gamma dose rate (TGD), geology, fault lines and topsoil permeability as predictors for the creation of a GRP map based on logistic regression. MethodSoil gas radon measurements (SRC) are more suited for the estimation of GRP than indoor radon measurements (IRC) since the former do not depend on ventilation and heating habits or building characteristics. However, SRC have only been measured at a few locations in Switzerland. In former studies a good correlation between spatial aggregates of IRC and SRC has been observed. That’s why we used IRC measurements aggregated on a 10 km × 10 km grid to calibrate an ordered logistic regression model for geogenic radon potential (GRP). As predictors we took into account terrestrial gamma doserate, regrouped geological units, fault line density and the permeability of the soil. ResultsThe classification success rate of the model results to 56% in case of the inclusion of all 4 predictor variables. Our results suggest that terrestrial gamma doserate and regrouped geological units are more suited to model GRP than fault line density and soil permeability. ConclusionOrdered logistic regression is a promising tool for the modeling of GRP maps due to its simplicity and fast computation time. Future studies should account for additional variables to improve the modeling of high radon hazard in the Jura Mountains of Switzerland.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.