Abstract

Semiconductor device dimensions have been decreasing steadily over the past several decades, generating the need to overcome fundamental limitations of both the materials they are made of and the fabrication techniques used to build them. Modern metal gates are no longer a simple polysilicon layer, but rather consist of a stack of several different materials, often requiring multiple processing steps each, to obtain the characteristics needed for stable operation. In order to better understand the underlying mechanics and predict the potential of new methods and materials, technology computer aided design has become increasingly important. This review will discuss the fundamental methods, used to describe expected topology changes, and their respective benefits and limitations. In particular, common techniques used for effective modeling of the transport of molecular entities using numerical particle ray tracing in the feature scale region will be reviewed, taking into account the limitations they impose on chemical modeling. The modeling of surface chemistries and recent advances therein, which have enabled the identification of dominant etch mechanisms and the development of sophisticated chemical models, is further presented. Finally, recent advances in the modeling of gate stack pattering using advanced geometries in the feature scale are discussed, taking note of the underlying methods and their limitations, which still need to be overcome and are actively investigated.

Highlights

  • Ongoing miniaturization of metal oxide semiconductor field effect transistors (MOSFETs) is essential for the continued advances in computing performance, reduction of chip area, and lowered power dissipation in modern integrated circuits in accordance with Moore’s Law [1]

  • The insulating silicon dioxide (SiO2) layer between the conducting channel and the gate became so thin that quantum tunneling resulted in gate leakage currents too high to sustain stable MOSFET operation [3]

  • The particular aim of this review is to summarize recent achievements in the simulation of the etching of advanced node multi-layered gate stacks

Read more

Summary

Introduction

Ongoing miniaturization of metal oxide semiconductor field effect transistors (MOSFETs) is essential for the continued advances in computing performance, reduction of chip area, and lowered power dissipation in modern integrated circuits in accordance with Moore’s Law [1]. Thinner insulating layers and smaller dimensions allowed for faster switching, thereby increasing speed and improving performance. The insulating silicon dioxide (SiO2) layer between the conducting channel and the gate became so thin that quantum tunneling resulted in gate leakage currents too high to sustain stable MOSFET operation [3]. The insulating SiO2 layer is required to be as thin as possible in order to reach the high gate to channel capacitance required for effective switching characteristics, while a physically thicker layer helps to reduce tunneling. Effective switching and reduced tunneling were achieved by replacing SiO2 with a material with a higher dielectric constant (high-k material), to balance the increased distance between the gate and the channel. The most prominent of those materials used today are Hafnium (Hf)-based insulators, usually

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call