Abstract

Designers of aircraft engines frequently employ shrouds in turbine design. In this paper, a variable normal load friction force model is proposed to investigate the influence of shroud-like contact kinematics on the forced response of frictionally constrained turbine blades. Analytical criteria are formulated to predict the transitions between slick, slip, and separation of the interface so as to assess the induced friction forces. When considering cyclic loading, the induced friction forces are combined with the variable normal load so as to determine the effective stiffness and damping of the friction joint over a cycle of motion. The harmonic balance method is then used to impose the effective stiffness and damping of the friction joint on the linear structure. The solution procedure for the nonlinear response nf a two-degree-of-freedom oscillator is demonstrated. As an application, this procedure is used to study the coupling effect of two constrained forces, friction force and variable normal load, on the optimization of the shroud contact design.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call