Abstract

The paper considers fragmentation process of high-explosive projectile casings, i.e. rapidly expanding cylinders loaded by extreme internal pressure generated by detonation of explosives. The classical, physically based, Mott model of the ring fragmentation is examined and the adequate computer program is realized. The fragment size (or mass) distribution is analyzed and the average fragment size is related to the characteristics of expansion and the casing material properties. The influence of the fragmentation process parameters on the nature of fragment length distribution is analyzed. The theoretical distributions are compared with experimental data and good correspondence is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.